organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

rac-2,2'-Bipiperidine-1,1'-diium dibromide

Marju Laars, Kerti Ausmees, Marina Kudrjashova, Tõnis Kanger and Franz Werner*

Tallinn University of Technology, Department of Chemistry, Akadeemia tee 15, 12618 Tallinn, Estonia Correspondence e-mail: fwerner@chemnet.ee

Received 10 April 2011; accepted 27 April 2011

Key indicators: single-crystal X-ray study: T = 300 K: mean σ (C–C) = 0.006 Å: R factor = 0.038; wR factor = 0.093; data-to-parameter ratio = 17.5.

In the title compound, $C_{10}H_{22}N_2^{2+}\cdot 2Br^-$, a precursor in the synthesis of organocatalysts, the bipiperidinium ion is located on a twofold rotation axis which passes through the mid-point of the central C-C bond. The piperidinium ring adopts a chair conformation. In the crystal, the cations are linked together by Br⁻ ions through N-H···Br hydrogen bonds, forming layers parallel to the *ab* plane.

Related literature

For the synthesis, see: Krumholz (1953); Herrmann et al. (2006). For the application of N-substituted enantiopure derivatives of the title compound in organocatalysis, see: Laars et al. (2008). For details of the Cu^{II}-catalysed Henry reaction, see: Noole et al. (2010). For related structures, see: Sato et al. (1982); Baran et al. (1992a,b); Intini et al. (2008).

Experimental

Crystal data

 $C_{10}H_{22}N_2^{2+}\cdot 2Br^{-1}$ $M_r = 330.12$ Monoclinic, C2/c a = 11.789 (2) Å b = 10.6403 (18) Å c = 11.6632 (17) Å $\beta = 107.687 \ (5)^{\circ}$

V = 1393.9 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 5.79 \text{ mm}^{-1}$ T = 300 K $0.40 \times 0.30 \times 0.20 \text{ mm}$

Data collection

Bruker SMART X2S diffractometer 4225 measured reflections Absorption correction: multi-scan 1225 independent reflections (SADABS; Sheldrick, 1996) 1012 reflections with $I > 2\sigma(I)$ $T_{\min} = 0.151, \ T_{\max} = 0.391$ $R_{\rm int} = 0.068$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of
$wR(F^2) = 0.093$	independent and constrained
S = 1.08	refinement
1224 reflections	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
70 parameters	$\Delta \rho_{\rm min} = -0.94 \text{ e} \text{ Å}^{-3}$

Table 1

	Hy	drogen-	bond	geometry	(Å,	0)
--	----	---------	------	----------	-----	----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1NA\cdots Br1^i$	0.95 (4)	2.36 (4)	3.293 (3)	168 (3)
$N1 - H1NB \cdots Br1^{ii}$	0.92 (4)	2.34 (4)	3.228 (3)	162 (3)

Data collection: GIS (Bruker, 2010); cell refinement: SAINT

(Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

The authors thank for funding grant agreement No. 229830 IC-UP2 under the 7th Framework Programme of the European Commission, the EU European Regional Development Fund (3.2.0101.08-0017), the Estonian Science Foundation (grant No. 8289) and the Ministry of Education and Research (grant No. 0142725 s06).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2700).

References

- Baran, P., Valigura, D., Svoboda, I. & Fuess, H. (1992a). Z. Kristallogr. 202, 137-139.
- Baran, P., Valigura, D., Svoboda, I. & Fuess, H. (1992b). Z. Kristallogr. 202, 142 - 144.
- Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2010). GIS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Herrmann, W. A., Baskakov, D., Herdtweck, E., Hoffmann, S. D., Bunlaksananusorn, T., Rampf, F. & Rodefeld, L. (2006). Organometallics, 25 2449-2456
- Intini, F. P., Cini, R., Tamasi, G., Hursthouse, M. B. & Natile, G. (2008). Inorg. Chem. 47, 4909-4917.
- Krumholz, P. (1953). J. Am. Chem. Soc. 75, 2163-2166.
- Laars, M., Kriis, K., Kailas, T., Müürisepp, A.-M., Pehk, T., Kanger, T. & Lopp, M. (2008). Tetrahedron Asymmetry, 19, 641-645.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Noole, A., Lippur, K., Metsala, A., Lopp, M. & Kanger, T. (2010). J. Org. Chem. 75, 1313-1316.
- Sato, M., Sato, Y., Yano, S., Yoshikawa, S., Toriumi, K., Itoh, H. & Itho, T. (1982). Inorg. Chem. 21, 2360-2364.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2011). E67, o1324 [doi:10.1107/S1600536811016084]

rac-2,2'-Bipiperidine-1,1'-diium dibromide

M. Laars, K. Ausmees, M. Kudrjashova, T. Kanger and F. Werner

Comment

N-substituted, enantiopure derivatives of the title phase, *rac*-2,2'-bipiperidine-1,1'-diium dibromide (**I**), catalyse stereoselectively both aldol reactions (Laars *et al.*, 2008) and, in the form of their Cu^{II}–complexes, Henry (nitro-aldol) reactions (Noole *et al.*, 2010).

Owing to the twofold axis, passing the centre of the bond C1—C1ⁱ (Fig. 1), Z=0.5. Bond lengths and bond angles in the salt are normal. The piperidinium rings adopt chair conformation, with their least-squares planes (defined by their carbon and nitrogen atoms) twisted by about 77° against each other. Parallel to the (0 0 1) plane, the structure is made up of layers with a repeating distance of $d_{001}/2$ of cations, which are hydrogen-bound *via* bromide ions (Fig. 2).

Experimental

Single crystals of (I) were prepared from 2,2'-bipiperidine (Krumholz, 1953) according to Herrmann et al. (2006).

Refinement

Except for the protonic H atoms H1NA and H1NB, whose positions were refined freely, H atoms were included at calculated positions $[d(C-H) = 0.97 (CH_2) \text{ or } 0.98 \text{ Å} (CH)]$ and treated as riding on their base atoms. For all H atoms, $U_{iso}(H)$ values were set at $1.2U_{eq}(C \text{ or } N)$. The $\overline{6}$ 8 10 reflection was excluded from the refinement due to its large $\Delta(F^2)/\text{esd}$ value.

Figures

Fig. 1. Cationic moiety in the crystal structure of the title compound together with the bromide ions bound to it through N—H···Br hydrogen bonds. Displacement ellipsoids for non–H atoms are drawn at the 50% probability level. Orange dashed lines indicate the hydrogen bonds. Symmetry codes: (i) -*x*, *y*, 1/2 - *z*; (ii) 1/2-*x*, 1/2 - *y*, 1 - *z*; (iii) *x*, -*y*, -1/2 + *z*; (iv) -1/2 + *x*, 1/2 - *y*, -1/2 + *z*; (v) -*x*, -*y*, 1 - *z*.

Fig. 2. Packing diagram of the title compound. Orange dashed lines indicate N—H…Br hydrogen bonds. H atoms not involved in the hydrogen bonds have been omitted for clarity.

rac-2,2'-Bipiperidine-1,1'-diium dibromide

Crystal data

$C_{10}H_{22}N_2^{2+}\cdot 2Br^{-}$	F(000) = 664
$M_r = 330.12$	$D_{\rm x} = 1.573 {\rm Mg m}^{-3}$
Monoclinic, C2/c	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 1621 reflections
a = 11.789 (2) Å	$\theta = 2.6 - 24.9^{\circ}$
b = 10.6403 (18) Å	$\mu = 5.79 \text{ mm}^{-1}$
c = 11.6632 (17) Å	T = 300 K
$\beta = 107.687 (5)^{\circ}$	Prism, colourless
$V = 1393.9 (4) \text{ Å}^3$	$0.40\times0.30\times0.20\ mm$
Z = 4	

Data collection

1225 independent reflections
1012 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.068$
$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
$h = -13 \rightarrow 14$
$k = -12 \rightarrow 12$
$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.093$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.08	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.P)^{2} + 0.0285P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
1224 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
70 parameters	$\Delta \rho_{max} = 0.47 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.94 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.19514 (3)	0.07309 (4)	0.77393 (4)	0.0429 (2)
N1	0.1066 (3)	0.1990 (3)	0.1590 (3)	0.0319 (7)
H1NA	0.156 (3)	0.271 (4)	0.183 (3)	0.038*
H1NB	0.146 (3)	0.132 (4)	0.202 (4)	0.038*
C1	-0.0106 (3)	0.2219 (3)	0.1814 (3)	0.0287 (8)
H1	-0.0630	0.1510	0.1473	0.034*
C2	-0.0661 (3)	0.3394 (4)	0.1136 (3)	0.0385 (9)
H2A	-0.1423	0.3553	0.1265	0.046*
H2B	-0.0148	0.4111	0.1438	0.046*
C3	-0.0836 (4)	0.3232 (5)	-0.0213 (4)	0.0524 (11)
H3A	-0.1393	0.2553	-0.0526	0.063*
H3B	-0.1169	0.3997	-0.0635	0.063*
C4	0.0349 (4)	0.2940 (4)	-0.0433 (3)	0.0489 (11)
H4A	0.0213	0.2782	-0.1284	0.059*
H4B	0.0872	0.3662	-0.0208	0.059*
C5	0.0944 (4)	0.1811 (4)	0.0280 (4)	0.0442 (10)
H5A	0.0474	0.1064	-0.0017	0.053*
H5B	0.1725	0.1694	0.0182	0.053*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0502 (3)	0.0283 (3)	0.0495 (4)	-0.01100 (16)	0.0142 (3)	-0.00332 (18)
N1	0.0415 (17)	0.0201 (16)	0.0361 (19)	0.0024 (14)	0.0146 (16)	0.0033 (15)
C1	0.0344 (18)	0.0208 (18)	0.031 (2)	-0.0017 (15)	0.0101 (16)	-0.0031 (17)
C2	0.042 (2)	0.034 (2)	0.037 (2)	0.0072 (18)	0.0088 (19)	0.0033 (19)
C3	0.069 (3)	0.053 (3)	0.029 (2)	0.006 (2)	0.005 (2)	0.004 (2)
C4	0.075 (3)	0.044 (3)	0.031 (2)	-0.004 (2)	0.020 (2)	0.000 (2)
C5	0.068 (3)	0.033 (2)	0.040(2)	-0.006(2)	0.030(2)	-0.012(2)

Geometric parameters (Å, °)

N1—C1	1.501 (4)	C2—H2A	0.9700
N1—C5	1.503 (5)	C3—C4	1.528 (5)
N1—H1NB	0.92 (4)	С3—НЗА	0.9700
N1—H1NA	0.95 (4)	С3—Н3В	0.9700
C1—C2	1.517 (5)	C4—C5	1.508 (6)

supplementary materials

C1—C1 ⁱ	1.542 (6)	C4—H4A	0.9700
C1—H1	0.9800	C4—H4B	0.9700
C2—C3	1.533 (5)	С5—Н5А	0.9700
C2—H2B	0.9700	С5—Н5В	0.9700
C1—N1—C5	112.9 (3)	C4—C3—C2	110.5 (3)
C1—N1—H1NB	112 (2)	С4—С3—Н3А	109.5
C5—N1—H1NB	110 (2)	С2—С3—Н3А	109.5
C1—N1—H1NA	109 (2)	С4—С3—Н3В	109.5
C5—N1—H1NA	106 (2)	С2—С3—Н3В	109.5
H1NB—N1—H1NA	107 (3)	НЗА—СЗ—НЗВ	108.1
N1—C1—C2	108.5 (3)	C5—C4—C3	111.4 (3)
N1—C1—C1 ⁱ	108.3 (3)	C5—C4—H4A	109.3
C2—C1—C1 ⁱ	116.7 (2)	C3—C4—H4A	109.3
N1—C1—H1	107.7	C5—C4—H4B	109.3
С2—С1—Н1	107.7	C3—C4—H4B	109.3
C1 ⁱ —C1—H1	107.7	H4A—C4—H4B	108.0
C1—C2—C3	110.2 (3)	N1C5C4	110.2 (3)
C1—C2—H2B	109.6	N1—C5—H5A	109.6
С3—С2—Н2В	109.6	С4—С5—Н5А	109.6
C1—C2—H2A	109.6	N1—C5—H5B	109.6
C3—C2—H2A	109.6	С4—С5—Н5В	109.6
H2B—C2—H2A	108.1	Н5А—С5—Н5В	108.1
a (1) (1)			

Symmetry codes: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
N1—H1NA…Br1 ⁱⁱ	0.95 (4)	2.36 (4)	3.293 (3)	168 (3)	
N1—H1NB…Br1 ⁱⁱⁱ	0.92 (4)	2.34 (4)	3.228 (3)	162 (3)	
Symmetry codes: (ii) $-x+1/2$, $-y+1/2$, $-z+1$; (iii) x , $-y$, $z-1/2$.					

Fig. 2

